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ABSTRACT 
 Applying the Hierarchical Bayesian Regression model to weekly aggregated 

sales history data from 92 retail stores located around Tokyo, I calculated price 
elasticities by item, week, and store. These elasticities are more stable than figures 
calculated using the Hierarchical Regression or Bayesian Regression models. 
Furthermore, using Google Earth, I visualized the calculated price elasticities of these 
92 stores over 67 weeks, providing a better understanding about heterogeneity of price 
elasticities across time and space. 
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INTRODUCTION 
Currently consumers in Japan are more price-conscious, especially when 

purchasing commodity goods in supermarkets. In response to this, many retailers cut 
shelf price to gain business. It is however necessary to optimize the price and/or 
promotions in addition to cutting prices in order to maintain profits and sustain growth. 
Because consumer behavior depends on location, competitors, and other factors, store 
customization is a very important consideration (Levy and Weitz, 2011). 

 Chintagunta, Dube, and Singh (2008) measured the effects of price 
discrimination by a supermarket chain in Chicago, and proposed optimal stores 
pricing. In contrast, Dobson and Waterson (2008) proposed uniform pricing rather 
than optimal pricing specific to each store. 

 Price elasticities by store and time provide important, fundamental information 
for price customization. A popular way to calculate price elasticity by store and week 
is the estimation of parameters using a regression model, that is, a model with 
parameters depending on store and week, using daily sales data aggregated by store. 
Because of limited storage capacity, however, some retailers retain only weekly 
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historical sales data. However, estimating parameters using a regression model and 
input by store and week using stores’ weekly sales data, could be unstable (Blattberg 
& George, 1991; Montgomery, 1997). 

 Therefore, in this study, I applied the MCMC method using Gibbs’ sampling to 
estimate the parameters of the Hierarchical Bayesian Regression model and calculated 
weekly price elasticities by store. I also dynamically visualized weekly price 
elasticities by store, using Google Earth. 

 

BAYESIAN UPDATING USING MCMC METHOD 

Calculation of Posterior Expectation 
 Given parameter   and observed data  1, ny y y  , and using the definition 

of conditional probability, Bayes’ theorem holds:        Pr Pr Pr Pry y y   , 
where  Pr   is a prior distribution of parameter   including all à priori information, 

 Pr y   is a likelihood function of the observed data given the parameter  , and 

 Pr y  is a posterior distribution of y . The expectation of posterior distribution 

 Pr y  

          1
Pr Pr Pr

Pr
E y d y d       


    

is called a Bayesian estimator. The advantages of Bayesian estimation are the ability 
to use prior information, parameter updating, and so on. 

 To estimate (calculate the expectation of) posterior distribution we must solve 
the integral stated above, which is usually very difficult. If solving the integral is 
difficult or impossible, then conjugating prior, asymptotic expansion and Monte-Carlo 
integration are used to estimate the posterior distribution. 

 
Monte-Carlo Method and MCMC Method 

 If the random sample following the posterior distribution 
      1 2, , , N  

 is 

available, we can approximate the expectation of posterior distribution by the Monte-Carlo 

integral
 

1

N n

n
N

 . By the law of large numbers, the Monte-Carlo integral is a valid  

approximation of expectation (Tienery & Kadane, 1986). However, when random 
sampling of the posterior distribution is not available and if the parameter is 
high-dimensional, random sampling is very inefficient. In this case, using a sample 
following Markov chains derived from posterior distribution, we calculate the 
posterior expectation using the Monte-Carlo integral. This method of calculating 
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Set N : number of iterations (sampling) 
and (0)

2 : initial value of second parameter 
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i

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where M denotes burn-in 

period.where M  denotes burn-in period 

1i i   

YES 

NO 

posterior expectation is called the MCMC (Markov chain Monte Carlo) method. Note 
that sampling based on the MCMC method is not random and we cannot apply the law 
of large numbers. However, because Markov chains used in the MCMC method are 
ergodic, converging to posterior approximation of posterior expectation by the 
Monte-Carlo integral is valid (Rossi, Allenby, & McCulloch, 2005). The MCMC 
method is also applicable if solving the integral of posterior expectation or random 
sampling from posterior distribution is difficult. 

 Gibbs sampling and Metropolis-Hasting sampling are popular algorithms of the 
MCMC method, and we applied Gibbs sampling (Figure 1) in this study (Tajima, 
2012). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1  Gibbs Sampling 
 

Gibbs sampling requires two conditions: (1) the full conditional distribution is 
known, and (2) sampling from the full conditional distribution is available. Although 

sample   
0

N
i

i



 is not random, the transition probability from  i  to  1i   is

                  1 1 1 1
1 1 2 2 1 2, Pr , , Pr , ,i i i i i i i iK y y y           ; hence, it states that   

0

N
i

i



 

is a sample from a Markov chain with kernel K. As N   , the distribution of  i  
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will converge to the posterior distribution of  . Upon completion, the first M  
samples are rejected, where M  is the burn-in period. The resulting sample 

  
1

N
i

i M


 
 is used to calculate the posterior expectation. 

Because we can explicitly calculate the full conditional probability of the 
Hierarchical Regression model (Table 1), this study uses Gibbs sampling. 

Full Conditional Probability of Hierarchical Bayesian Regression Model The 
Hierarchical Regression model assumes that parameters vary across households or 
stores but independently and identically follow the same distribution; that is, the 
Hierarchical Regression model assumes the parameters’ hierarchical structure. Thus, 
the parameter for the said store is estimated using not only its own data but that of all 
other stores for the given time period. Furthermore, by estimating the parameters 
using the Bayesian approach, we can use historical data from both the said store and 
from all of the other stores. Thus, the Hierarchical Bayesian Regression model uses all 
the historical data from all of the stores for parameter estimation. 

 
Table 1  Hierarchical Bayesian Regression Model vs. Non-Hierarchical and 

Non-Bayesian model 

Hierarchy of Parameters(also 
using data of other stores) 

Parameter Estimation using Bayesian Approach  
(also using past data) 

NO YES 

NO Regression Model 
Bayesian Regression 

Model  

YES 
Hierarchical Regression 

Model  
Hierarchical Bayesian 

Regression Model 

 
The Hierarchical Regression model consists of two models: the within-subject 

model which directly describes the response structure within stores, and the other is 
the between-subjects model describing the relationship between stores. That is, the 
within-subject model is a regression with parameters specific to a certain store. This 
model is expressed as follows: 

 2,ht ht h ht ht h hy x N x      
,
 where 1, ,h H  and 1, , ht T   denote store and 

week, respectively. ,ht htx y  is the observed data, and 2,h h   is the parameter. 

 As stated above, the between-subject model determines the relationship between 

the within-store models, and is expressed as follows:  

 , , , dim dimh kN where k        
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Thus, 
2 2

1 1, , , , , , ,H H        are the parameters to be estimated. Assume these 

parameters to be the following. 
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 

 

That is, we can explicitly express full conditional distributions of each parameter, 
and estimate these parameters by the MCMC method using Gibbs sampling. 

 
CALCULATION OF DYNAMIC PRICE ELASTICITIES 

Data 
 The weekly sales data of green iced tea in a 2L PET bottle is used for parameter 

estimation. This data is provided by a retailer with roughly 130 supermarkets located 
around Tokyo. The data period is from May 24, 2010 to January 16, 2012, an 87-week 
data. Note that green iced tea sales are not seasonal. Setting the parameters estimated 
using the first 20 weeks’ prior cumulative data, the parameters beginning at the 21st 
week (November 27, 2010) are Bayesian updated immediately using the previous 
week’s parameters.  

 
Model 

 In this study, I estimate the parameters of the Hierarchical Bayesian Regression 
model by the MCMC method using Gibbs sampling, and then calculate price 
elasticities by week and by store. 

 Let us examine the within-subject model. The dependent variable is Purchase 
Incidence (PI) hty , that is, sales volume per 1,000 shoppers. The independent variables 
are average shelf price 1htx  and number of fliers 2htx  per week. Suppose that 
external factors, like weather, competition, and other factors do not affect the in-store 
sales, but the number of shoppers, PI is regarded as the sales index relative only to the 
in-store factors. Thus, the within-subject model is expressed as follows.  

  2
1 2 1 3 2 1 2 1 3 2 ,ht h h ht h ht ht h h ht h ht hy x x N x x                

And suppose that the prior distribution of the between-subject model is as 
follows.  
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 As stated earlier, setting the parameters estimated from the first 20 weeks’ data, 
each subsequent parameter is updated and price elasticities are calculated for the 92 
stores. Using the same procedure, 67 weeks’ price elasticities from 92 stores were 
calculated. 

 
Calculation of Dynamic Price Elasticities 

 To estimate the parameters, I used the “rhierLinearModel” function with the 
Bayesian package of R language (Manual of Package “bayesm”). The number of 
iterations of the MCMC method was set at 100,000. Although most computations 
converge in 50 iterations (Figure 2), I set the entire burn-in period to 10,000.Posteriors 
were calculated using 90,000 samples. My PC’s CPU is an Intel Core i7-2600 3 
40GHz, and computing one price elasticity takes roughly one hour. 

Three parameters (constant 1 , price 2 , and flier 3 ) were estimated for 

one week and one store, yielding a total number of 18,492 estimated parameters, 

that is, 92 stores times over 67 weeks. Accordingly, the price elasticity formula 

for regression is  2 1 2x x   , and 6,164 (92 stores times 67 weeks) price elasticities 

were calculated. 

 
VISUALISATION OF DYNAMIC PRICE ELASTICITIES 

In this study, I visualized the calculated 6,164 price elasticities via Google Earth 
(Figure 3). Google Earth uses not only a Graphic User Interface but also Keyhole 
Markup Language (KML), which is based on Extensible Markup Language (XML). I 
wrote a KML program that indicates 97 price elasticities at points where each store is 
located on the Kanto area map (Akanemaru, Uchibe, & Morita, 2007). These price 
elasticities vary weekly by manipulating the slider bar in the screen’s upper left corner. 
The size of this program is roughly 30,000 rows, 1.5 Mbytes. 
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Figure 2  Drawings of a Parameter until 200 Iterations 
 

 

 
 
 
 
 
 
 
 
 
 

 

  
 
 

Figure 3 Price Elasticity Visualization 
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CONCLUSIONS 
In this study, using the MCMC method with Gibbs sampling, I estimated the 

parameters of the Hierarchical Bayesian Regression model and calculated price 
elasticities by store and week. The parameters estimated are stable. As stated in 
Section 2.3, the Hierarchical Bayesian Regression model effectively estimates 
parameters. 

The MCMC method was developed and improved upon for use primarily in areas 
of thermodynamics, statistical mechanics, and others. Because of the dramatic 
improvement in the performance capabilities of personal computers, the MCMC 
method is now also used in marketing research because of its parameter estimation 
power using large quantities of marketing data. 

The number of price elasticities calculated in this study was 6,164, across 92 
stores and 67 weeks. Google Earth was used to visualize these price elasticities. I 
wrote a KML program that indicates 97 price elasticities at the point of each store’s 
location on the Kanto area map, by week. The viewer can observe these price 
elasticities varying weekly by manipulating the slider bar. The size of this program is 
roughly about 30,000 rows and 1.5 Mbytes which is accessible for most modern 
computers. 

In this paper, dynamic price elasticities by store and week were estimated by 
Hierarchical Bayesian Regression model using sales history data, and were visualized 
using Google Earth. 

These visualized dynamic price elasticities are substitutes for dynamic 
environmental factors including marketing activities of competitive stores, and 
combined with geographical information, therefore these can be useful for marketers 
to support decision making. 

Finally the author would like to point out that because this approach using 
Hierarchical Bayesian Regression model with Google Earth enables us to analyze 
insufficient data to identify heterogeneity between subjects considering geographical 
information, this can be used not only to pricing strategies of retailers, but also to 
many fields including town planning, analyzing markets worldwide, and so on. 
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