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ABSTRACT 

 

The multi-buyer joint replenishment problem (MJRP) is the multi-item inventory 

problem which deals with the replenishment of a group of product items that are 

jointly delivered to multi-buyer. The objective of MJRP is to develop policy to 

minimize the total cost which consists of the holding cost and the transport cost. In 

this paper, we propose a modified genetic algorithm (called GAT) which adopts a 

New Gene, basic cycle time, to solve the multi-buyer joint replenishment problem 

(MJRP). The genetic algorithm (GA) has been widely applied to solve MJRP. 

However, most of the literature which used the genes for chromosomes were the ratio 

of each product delivery cycle time to the basic cycle time. This searching method is 

called GAK here. The disadvantage of GAK is that the number of genes is determined 

by the number of product items and buyers, and the length of chromosomes will be 

expanded when the number of product items or buyers is increased. The length of 

chromosomes will impact the CPU running time in the genetic algorithm. The 

proposed GAT can improve the disadvantage of GAK. Simulation experiments 

demonstrate that the GAT is very efficient and outperforms GAK. The running time of 

GAK is improved over 96% by GAT. 
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INTRODUCTION 

In the real world, usually products are jointed to ship to multiple buyers or 

retailers by suppliers in order to reduce costs such as on gasoline and petrochemical 

products distribution. The supplier has to consider the holding cost of a product and 

the transport cost to minimize the total cost. In the classical EOQ model without 

considering joint replenishment, optimal ordering size and basic cycle time can be 

computed based on the demand of buyers. But when delivery items are considered to 

be jointed, the problem is termed as the joint replenishment problem (JRP). The JRP is 

a NP-hard problem proven by Arkin et al. (1989). 

The JRP has been extensively studied during the past two decades. Many 

iterative solution techniques of JPR have been presented in the literature. Kaspi and 

Rosenblatt (1991) proposed a RAND approach for solving the economic ordering 

quantity for jointly replenished items. The authors conducted an extensive simulation 

study and concluded that the RAND solution procedure outperforms previously 

known algorithm (Goyal 1974) for solving this problem. They claimed that using 

RAND 10 compared to optimal (full enumeration) solution, the maximum error value 

found is less than 0.2%. Goyal et al. (1993) suggested a modified procedure which 

used a better estimate for the lower bound of the basic cycle time. Wildeman (1997) 

presented an efficient optimal solution method for JRP by applying Lipschitz 

optimization to obtain a solution with an arbitrarily small deviation from the optimal 

solution. Frenk et al. (1999) proposed an efficient algorithm with ‘Improved-feasiblity 

procedure’ to determine the optimal policy of the multi-item and one-buyer inventory 

problem. Khouja et al. (2000) used 1200 randomly generated problems to make a 

comparison between genetic algorithms and the RAND method for solving the JRP. 

The GA found the solutions with the same total cost as the RAND for 761 problems, 

outperformed the RAND for six problems and under-performed the RAND for 433 

problems. The maximum percentage savings in total cost provided by the RAND was 

0.078%. Olsen (2005) developed an evolutionary algorithm (EA) that used a direct 

grouping method to solve JRP. The authors showed that EA for joint replenishment 

policy incurs a lower total cost than the best available algorithm for some parameters 

of factor. Overall the EA improved over the RAND for 5.1% of the 72,900 randomly 

generated problems. The maximum percentage savings in total cost provided by the 

RAND was 0.69% from the 72,900 problems. 

Recently, Moon et al. (2006) developed two algorithms for solving JPR with 

resource restriction. The main resource restriction in their paper is capital that can be 

invested. One of the algorithms is to modify the existing RAND algorithm to be 
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applicable to this problem and another is to develop a genetic algorithm for the JPR 

with resource restriction. Hoque (2006) developed a generalized global optimal 

solution algorithm of the JPR extended model which includes some practical issues 

Most of the literature has considered the JRP as a problem of coordinating the 

replenishment of multi-items for a single buyer. But a common practice for a supplier 

is to have multi-buyers who order multi-items from the supplier. In this case, the JRP 

becomes a multi-item multi-buyer joint replenishment problem. MJRP has received 

little attention in the literature until recently. Chan et al. (2003) proposed a new 

modified genetic algorithm for solving the MJRP. The performance test was compared 

to the algorithm of Goyal (1974) and got a better result. Li (2004) proposed a 

modified RAND method to solve the MJRP, but without a performance test. Chan et 

al. (2006) addressed the delivery scheduling issue for MJRP, once the optimal 

replenishment cycles are determined, by formulating four problems according to four 

different objectives in cost and resource minimization. The authors used the solution 

of the optimal replenishment cycles which had been solved to do the post research for 

optimal scheduling. 

MJRP is a MINLP problem. In MJRP, the delivery cycle time denoted by ijt  is 

the time interval between two consecutive delivered product items i  for buyer j . 

The delivery basic cycle time denoted by T  is the minimum value of ijt  and ijt  is 

an integer multiple of T , i.e. Integer ,,...,2,1 ,,...,2,1 ,  ijijij KJjIiTKt . The 

decision variables of optimizing total costs include the ijK  and T , therefore the 

number of decision variables is 1 JI , and the problem size depends on the items 

I  and buyers J . It is not easy to directly obtain the optimal solution for a large size 

problem. In previous reviews, the scholars have applied the genetic algorithm (GA) to 

solve JRP or MJRP. However, they used ijK  as the genes to form chromosomes. This 

method is called GAK here. Since chromosomes are formed by ijK , and ijK  are the 

decision variables, the number of ijK  is JI  . The length of chromosomes in GAK 

will be expanded when the number of product items or buyers is increased. The 

computing time of GAK will be longer when the size of the problem becomes large. 

The computing time is an important criterion to judge the performance of searching 

techniques. 

In this paper, using a New Gene T  is proposed to replace the genes ijK  for the 

genetic algorithm. The proposed method is called GAT. The New Gene T  in MJRP 

is the delivery basic cycle time. In GAT the number of genes T  is only one, but in 

GAK the number of genes ijK  is JI  . The chromosomes of GAT with gene T  are 

unlike the chromosome of GAK with the genes ijK , the length of chromosomes will 
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NOT be expanded when the problem size enlarges. 

 

PROBLEM AND MODEL FORMULATION 

 

Problem Statement 

A single supplier supplies multi-items of I  products to multiple buyers, and the 

number of buyers is J . A supply network of jointed replenishment distribution is 

shown in Figure 1. All consignment inventories belong to the supplier. Each unit of 

product item i  for buyer j  in consignment costs the supplier ijC  and the holding 

cost is ijh  percent of ijC . A fixed common carrier S  is charged and a delivery cost 

ijs  of product item i  for buyer j  would continue to be added per delivery. Each 

buyer j  has a different demand of item i  product ijD . The goal of this problem is 

to minimize total costs which include the holding cost and transport costs. The 

transport costs consist of two components, one is common carrier cost and another is 

delivery cost. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  A supply network of jointed replenishment distribution 

 

Assumptions 

The basic assumptions in solving this problem are made as follows: 

1. The demand for the each buyer is constant. 

2. The holding cost is a fraction of the product cost. 

3. The common carrier cost is constant  

4. Any product in the set of products can be jointed to transport. 

5. Stock-outs are not allowed. 

 

 

Supplier

Buyer 1

Demand Di1

Buyer 2

Demand Di2

Buyer j

Demand Dij

Buyer J

Demand DIJ

Item 1 Item IItem 2



 

 

 Contemporary Management Research  317   

 

 

 

Notations 

P  The set of products,   ,....,2,1 IP  , 

B  The set of buyers,   ,....,2,1 JB  , 

I  The number of product items, 

J  The number of buyers, 

ijD  Demand of item i  for buyer j , 

ijh  Inventory holding cost of item i  for buyer j , per unit per unit time, 

ijC  Product unit cost of item i  for buyer j , 

S  Common carrier cost, 

ijs  Delivery cost of item i  for buyer j , 

T  Delivery basic cycle time (Decision variable), 

ijt  Delivery cycle time of item i  for buyer j , 

ijK  The ratio of ijt  to T , TtK ijij / , ijK  is an integer (Decision variable), 

Z Total costs consist of holding cost, common carrier cost and delivery cost. 

 

Model Formulation 

The goal of the joint replenishment policy is to minimize the total costs which 

include the holding cost and transport costs. The transport costs include two 

components, one is the common carrier cost and another is the delivery cost. Suppose 

the delivery cycle time of item i  for buyer j  is ijt , the holding cost of item i  for 

buyer j  is equal to 2/ijijijij tDCh . Suppose each common carrier cost is S  and the 

delivery basic cycle time is T , then the annual common carriers cost is TS / . 

Suppose the delivery cost of item i  for buyer j  is ijs , then the annual delivery cost 

of buyer j  is ijij ts / . Total costs =annual holding cost + annual common carriers cost 

+ annual delivery cost. The objective function can be written as 

 

  

To reduce total costs, product jointed delivery policy is considered. Thus ijt  

should be the integer multiple to T , i.e.   , IntegerKTKt ijijij  . The objective 

function can be rewritten and the constraints are shown as  
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In above MJRP model, all the ijK  must be positive integers. It is a nonlinear 

integer problem.  

 

The Bound of Basic Cycle Time 

The optimal basic cycle time can be derived from (2) by  0/  T Z   

 

*T  is a function of  ijK  and  ijK  are the decision variables of *T . The lower 

bound of 1 ijK . The upper bound of *T  can be decided when 

1 ijK ,   B jPi .,   

If the product item i  for buyers j  is delivered independently, the optimal 

cycle time of each item i  for buyer j  can be calculated from classical EOQ model.  

When the product is jointly delivered with other products, the common delivery 

cost 0S , the optimal cycle time for each item i  to buyer j  is 
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Kaspi and Rosenblatt (1991) proposed a lower bound of *T , which can be 

modified for MJRP to be decided by the minimum joint delivery cycle for all ijt , 

Goyal et al. (1993) suggested a better estimate for    minT  in the single buyer 

model, which is modified by Li (2004) and employed for multiple buyers. 

 

where       
,

1 ij
ji

tMint   

The formula (9) is obtained from the first iteration, which Kasp & Rosenblatt 

(1983) applied in an iterative way until the value of  iK  is converged in the 

computing procedure of JRP. 

 

METHODOLOGY 

 

Basic Concept of Genetic Algorithm 

A genetic algorithm (GA) is a search technique which is used in computing to 

find exact or approximate solutions for optimization and search problems. Genetic 

algorithms (GAs) search populations of solutions for an optimization problem towards 

improvement by searching and selection process associated with the genes. GAs 

encode each possible solution into a set of genes. Each possible solution is encoded 

into a chromosome with binary digits or integers. Genetic algorithms are a particular 

class of evolutionary algorithms that use techniques inspired by evolutionary biology 

such as inheritance, selection, crossover, and mutation.  

The main feature of the genetic algorithm is started with a set of solutions which 

is represented by chromosomes and is called population. Solutions (parents) from the 

population are selected to mate according to their fitness and to produce a new 

population (offspring) by a reproductive plan. Higher fit solutions are given more 

opportunities to reproduce, so that offspring inherit characteristics from each parent. 

New generations of solutions are produced containing better genes than a typical 

solution in a previous generation. In the evolutionary process, the techniques of 
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selection, crossover and mutation operator are applied in the algorithm. If the 

population is not once producing offspring noticeably different from those in previous 

generations, the algorithm procedure is said to have converged to a set of solutions 

and the best solution is the optimal solution to the problem. Thus, a typical genetic 

algorithm requires two conditions to be defined: 

 A genetic representation of the solution domain, 

 A fitness function to evaluate the solution domain. 

 

The procedure of a genetic algorithm is as follows. 

1. Initialize a set of population of chromosomes with feasible solutions randomly. 

2. Evaluate each chromosome in the population by a fitness function. 

3. Select chromosomes from the population for reproduction. 

4. Alter chromosomes in the population by applying crossover and mutation 

operators. 

5. Evaluate the new chromosomes. 

6. If the terminate condition is satisfied then return the best solution, if not, start 

again from point 3. 

 

Using ijK  as the Genes for Chromosomes in GAK 

Khouja et al. (2000) applied the genetic algorithm (GA) to solve JRP and Chan et 

al. (2003) applied the GA to solve MJRP. They used the ratio of product delivery cycle 

time to the basic cycle time ( ijK ) as the genes in a chromosome. The chromosomes 

represent the integer multipliers of basic cycle time (T ) for each product delivered to 

each buyer. Khouja et al. (2000) used the upper bound and lower bound of T  from 

equations (5) and (8). The lower bounds on the values of ijK  are 1LB

ijK , where 

1, .,...2,1   jIi . They obtained the upper bounds on the ijK  by using equations (6) 

and (8). The values of UB

ijK  are given by: 

Let iju  denote the smallest integer such that the value of iju
2  is larger or equal 

to the upper bound ijK . An integer number from the range ]2 ,1[ iju
 can be encoded 

and corresponded to the binary sequence bits iju . The genetic representation for 

possible solutions is created by using the genes ijK   
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The integer number from the range ]2 ,1[ iju
 is the number between the lower 

bound and upper bound of ijK . 

Each individual chromosome in the population represents a possible solution to 

the problem. The binary chromosome can be converted into a decision variables 

representation of B jPi K ij  ,,  after the GA operation. The evaluation function is 

responsible for rating these possible solutions when each decision variable is assigned. 

Khouja et al. (2000) used an evaluation function which can be modified for MJRP. 

Equation (12) is a function of the values ijK , the number of decision variable ijK  

is JI  . Using the genes ijK , the total length of the binary chromosomes is 
 

J

j

I

i

iju
1 1

 

bits. The disadvantage of using the genes ijK  is the total length of the chromosomes 

will be expanded when the problem size JI   enlarges. 

 

Using T  as the Genes for Chromosomes in GAT  

In this paper we propose the decision variable of basic cycle time T  as the gene 

to replace B jPi K ij  ,,  . The number of genes T  in an individual chromosome 

is only one. The advantage of using the gene T  is the total length of chromosome 

will be NOT expanded when the problem size JI   enlargs. 

The upper bound maxT  is easily obtained from equation (5). The lower bound of 
*T  can be obtained from equation (8) which is modified from one Kaspi and 

Rosenblatt (1991) proposed for solving JRP. In this paper we used another lower 

bound of *T  from equation (9) which is modified from an equation Goyal at al (1993) 

suggested and tested by simulating a better estimate for    minT  to solve JRP. 

Let l  denote the biggest integer such that the value of l2  is smaller or equal to 

 minT . Let u  denote the smallest integer such that the value of u2  is larger or equal 

to  maxT . A real random number from the range ]2 ,2[ ul  can be encoded and 

corresponded to the binary sequence bits v . For computing accuracy, let  
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Using the larger value of m , we obtain a higher accuracy of T . 

The genetic representation for possible solutions using basic cycle time T  as the 

gene is created below. 

The total length of our chromosomes is v  bits. The binary chromosome can be 

converted into a decision variables representation of T  after the GA operation.  

The relationship between basic cycle time T  and the integer multipliers of  ijK  

is discussed as follow. If a xT  value is given within the bound of ],[ maxmin TT  , the 

annual common carrier cost xTS /  is a constant. The objective function (2) can be 

described as  

where 

where 
ijZ  is the holding cost and delivery cost of  each item i  in buyer j  at 

xTT   . The minimum value of ijZ  is decided by variable ijK  in equation (15) by 

0  /  ijij KZ . 

ijijij

ij

x

ij
DCh

s

T
K

21ˆ  , ijK̂  is the number before ijK  rounded off, number Realˆ ijK . 

Li (2004) modified Goyal’s (1973b) round off condition in JRP and obtained the 

following condition for MJRP: 
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the above inequality can be obtained. The ijK  is a function of xT . 
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The post optimal solution of xT  is 
*

xT , which can be calculated from (4) when 

)( xij TK  is decided. 

Equation (17) is the evaluation function of GAT in which individual 

chromosomes use T  as the gene.  

 

 

SIMULATION EXPERIMENTS AND RESULTS 

The simulation experiments are designed to confirm the performance of the GAT 

algorithm, and then are compared with the GAK algorithm (Khouja et al. 2000) which 

has been tested and shown to have good performance. For comparison, the parameter 

ranges of test problems and the values for parameters of GA are the same with Khouja 

et al. 2000. The values of ijD , ijC , ijh  and ijs  for the test problem were randomly 

generated from uniform distribution on the ranges [100, 100 000], [1, 3], [0.5, 5.0] and 

[0.2, 3.0] respectively. Four different values of JI   (10, 20, 30 and 50) and four 

values of S (5, 10, 15 and 20) were considered. The values of parameters for the GA 

operation are set: probability of crossover 0.6, the probability of mutation, denoted 

mP , mP =1/ (string length of chromosome), population size 30 for JI   (10, 20 and 

30) and Pop 100 for JI   50, elite=1. The above values of the parameters were 

selected by the best performance from testing the problems of the GAK algorithm. 

The termination condition is to stop computing after 500 generations or when no 

improved solution is obtained in 50 generations. 
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Table 1  Comparison between GAK and GAT solutions for total cost 

Test Pop I× J S  ZGAT better (%) 
ZGAT better or 

equal (%) 

Max. Cost 

improved (%) 

Aver. Cost 

improved (%) 

1 30 10 5 5 100 0.2882 0.0036 

2   10 1 100 0.0022 0.0000 

3   15 2 99 0.0027 0.0000 

4   20 2 99 0.1869 0.0019 

5 30 20 5 27 94 0.7564 0.0426 

6   10 45 100 0.7774 0.0353 

7   15 36 99 0.4187 0.0166 

8   20 36 99 0.3269 0.0116 

9 30 30 5 75 97 0.4050 0.0158 

10   10 77 98 0.6672 0.0378 

11   15 87 100 0.5040 0.0336 

12   20 70 100 0.8406 0.0464 

13 100 50 5 98 99 0.6273 0.0423 

14   10 100 100 0.5975 0.1342 

15   15 100 100 0.4827 0.0937 

16   20 100 100 0.5150 0.0963 

Average   54 99 0.4624 0.0382 

Note: ‘ZGAT better (or equal)’ means that comparing the effectiveness of the solution , the results of percentage 

by GAT algorithm is better (or equal) than GAK method. 

 

For each combination of JI   and S , 100 problems were generated and solved 

by using the GAK and GAT for a total 1600 problems. A value of 8m  was used to 

compute the bits v (length of chromosomes) with GAT for solution accuracy. The 

simulation results are summarized in Tables 1 and 2. In Table 1, the label of ‘ GATZ  

better’ means that the solution of objective function Z minimized by GAT is better 

than by GAK, and the label of ‘ GATZ  better or equal’ means that the solution of 

objective function Z minimized by GAT is better than or is equal to GAK. The 

percentage of all test problems of ‘ GATZ  better’ is 54% and ‘ GATZ  better or equal’ is 

99%. The maximum saving cost in the problem of Test 12 reaches 0.8406 % of the 

total cost. The average of maximum saving cost is 0.4624 %. For the large size 

problem ( JI  =50), the performance of solutions quality with the GAT is much better 

than with the GAK. As shown in Table 1, JI  =50, ‘ GATZ  better’ is 98% for S =5 

and 100% for S =10, 15 and 20. And comparing the termination generations in Table 

2, the average termination generations with GAT are 52.85 and with GAK are 500. 

Obviously the GAT convergence to a good solution is much faster than with GAK. 
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The average terminated generations with GAK was improved 89.43% by using GAT. 

Comparing the CPU running time, the average CPU time for each problem with GAT 

is 0.786 seconds and with GAK it is 44.011 seconds. The average computing time 

with GAK can be improved 97.805% by the proposed GAT. Eventually, GAT is 

superior to GAK both in the quality of solutions as CPU running time.  

 

Table 2  Comparison between GAK and GAT solutions for # Gen. and CPU time 

Test Pop I× J S  
Average terminated Gen. Average CPU time (sec) 

GAT GAK Improved % GAT GAK Improved % 

1 30 10 5 51.03 500 89.79 0.668 18.203 96.328 

2   10 51.20 500 89.76 0.654 17.991 96.361 

3   15 51.08 500 89.78 0.652 17.960 96.367 

4   20 51.22 500 89.75 0.654 17.979 96.361 

5 30 20 5 51.90 500 89.62 0.714 32.779 97.821 

6   10 51.53 500 89.69 0.710 32.798 97.834 

7   15 52.56 500 89.49 0.726 32.842 97.788 

8   20 52.17 500 89.56 0.717 32.717 97.810 

9 30 30 5 53.87 500 89.22 0.812 47.717 98.297 

10   10 52.29 500 89.54 0.788 47.686 98.297 

11   15 53.19 500 89.36 0.803 47.747 98.317 

12   20 53.23 500 89.35 0.803 47.693 98.315 

13 100 50 5 54.81 500 89.03 0.960 77.522 98.755 

14   10 54.48 500 89.10 0.959 77.523 98.762 

15   15 55.69 500 88.86 0.982 77.492 98.732 

16   20 55.40 500 88.92 0.976 77.524 98.740 

Average   52.85 500 89.43 0.786 44.011 97.805 

Note: Average terminated Gen. means the average terminated generation for each tested problem. 

     Average CPU time means the average CPU running time for each tested problem. 

 

 

CONCLUSIONS 

In this paper, we propose using a New Gene T  to replace the genes ijK  for 

genetic algorithm to solve MJRP. The major advantage of GAT with New Gene T  is 

that the number of genes always is kept to only one in the chromosomes and the 

length of chromosomes is not expanded when the problem size enlarges. The New 

Gene shortens the CPU running time of GAT, which is important from a practical 

point of view. It can be used to solve the generalized MJRP efficiently. GAT 

outperformed GAK not only reducing CPU running time but also improving the 
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quality of the solutions. Finally, we would like to remark that the generalized MJRP 

model is not always realistic, and it may be further researched to handle constrained 

problem. 
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